Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Phys Chem Chem Phys ; 25(18): 12882-12890, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2316511

ABSTRACT

The global spread of the new coronavirus COVID-19 has seriously affected human health and has caused a large number of deaths. Using molecular dynamics (MD) simulations to study the microscopic dynamic behavior of the virion provides an important means to study the pathogenic mechanism. In this work, we develop an ultra-coarse-grained (UCG) model of the SARS-CoV-2 virion from the authentic cryo-electron microscopy data, which enables MD simulation of the entire virion within microseconds. In addition, a hybrid all-atom and UCG (AA/UCG) virion model involving an all-atom spike protein is developed for the investigation of the spike protein interactions. A comparison of the conformational changes for the spike proteins as simulated in the hybrid model and that isolated in solution as in the free form reveals that the former is completely different from the latter. The simulation results demonstrate the necessity for the development of multiscale models to study the functions of proteins in the biomolecular complexes.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cryoelectron Microscopy , Spike Glycoprotein, Coronavirus/metabolism , Molecular Dynamics Simulation , Virion/metabolism , Virion/ultrastructure
2.
Viruses ; 14(12)2022 12 14.
Article in English | MEDLINE | ID: covidwho-2163623

ABSTRACT

Infection with the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, leads to profound remodeling of cellular membranes, promoting viral replication and virion assembly. A full understanding of this drastic remodeling and the process of virion morphogenesis remains lacking. In this study, we applied room temperature transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) tomography to visualize the SARS-CoV-2 replication factory in Vero cells, and present our results in comparison with published cryo-EM studies. We obtained cryo-EM-like clarity of the ultrastructure by employing high-pressure freezing, freeze substitution (HPF-FS) and embedding, allowing room temperature visualization of double-membrane vesicles (DMVs) in a near-native state. In addition, our data illustrate the consecutive stages of virion morphogenesis and reveal that SARS-CoV-2 ribonucleoprotein assembly and membrane curvature occur simultaneously. Finally, we show the tethering of virions to the plasma membrane in 3D, and that accumulations of virus particles lacking spike protein in large vesicles are most likely not a result of defective virion assembly at their membrane. In conclusion, this study puts forward a room-temperature EM technique providing near-native ultrastructural information about SARS-CoV-2 replication, adding to our understanding of the interaction of this pandemic virus with its host cell.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , Vero Cells , Pandemics , Virion/ultrastructure
3.
Med Mol Morphol ; 55(1): 60-67, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1712248

ABSTRACT

SARS-CoV-2 is the cause of COVID-19. The three-dimensional morphology of viral particles existing and multiplying in infected cells has not been established by electron tomography, which is different from cryo-electron tomography using frozen samples. In this study, we establish the morphological structure of SARS-CoV-2 particles by three-dimensional reconstruction of images obtained by electron tomography and transmission electron microscopy of biological samples embedded in epoxy resin. The characteristic roots of spike structures were found to be arranged at the surface of a virion covered with an envelope. A high-electron-density structure that appears to be a nucleocapsid was observed inside the envelope of the virion on three-dimensional images reconstructed by electron tomography. The SARS-CoV-2 particles that budded in the vacuoles in the cytoplasm were morphologically identical to those found outside the cells, suggesting that mature and infectious SARS-CoV-2 particles were already produced in the vacuoles. Here, we show the three-dimensional morphological structure of SARS-CoV-2 particles reconstructed by electron tomography. To control infection, inhibition of viral release from vacuoles would be a new target in the development of prophylactic agents against SARS-CoV-2.


Subject(s)
Electron Microscope Tomography , SARS-CoV-2 , COVID-19 , Humans , Imaging, Three-Dimensional , SARS-CoV-2/ultrastructure , Virion/ultrastructure
4.
Nat Commun ; 13(1): 868, 2022 02 14.
Article in English | MEDLINE | ID: covidwho-1684025

ABSTRACT

SARS-CoV-2 infection is a major global public health concern with incompletely understood pathogenesis. The SARS-CoV-2 spike (S) glycoprotein comprises a highly conserved free fatty acid binding pocket (FABP) with unknown function and evolutionary selection advantage1,2. Deciphering FABP impact on COVID-19 progression is challenged by the heterogenous nature and large molecular variability of live virus. Here we create synthetic minimal virions (MiniVs) of wild-type and mutant SARS-CoV-2 with precise molecular composition and programmable complexity by bottom-up assembly. MiniV-based systematic assessment of S free fatty acid (FFA) binding reveals that FABP functions as an allosteric regulatory site enabling adaptation of SARS-CoV-2 immunogenicity to inflammation states via binding of pro-inflammatory FFAs. This is achieved by regulation of the S open-to-close equilibrium and the exposure of both, the receptor binding domain (RBD) and the SARS-CoV-2 RGD motif that is responsible for integrin co-receptor engagement. We find that the FDA-approved drugs vitamin K and dexamethasone modulate S-based cell binding in an FABP-like manner. In inflammatory FFA environments, neutralizing immunoglobulins from human convalescent COVID-19 donors lose neutralization activity. Empowered by our MiniV technology, we suggest a conserved mechanism by which SARS-CoV-2 dynamically couples its immunogenicity to the host immune response.


Subject(s)
COVID-19/immunology , Fatty Acids/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Virion/immunology , A549 Cells , Allosteric Site/genetics , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/genetics , COVID-19/metabolism , COVID-19/virology , Cells, Cultured , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Fatty Acid-Binding Proteins/immunology , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/metabolism , Humans , MCF-7 Cells , Microscopy, Confocal/methods , Protein Binding , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virion/metabolism , Virion/ultrastructure
5.
J Cell Mol Med ; 26(1): 25-34, 2022 01.
Article in English | MEDLINE | ID: covidwho-1570773

ABSTRACT

Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Viral/chemistry , COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/biosynthesis , Cryoelectron Microscopy , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/immunology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/ultrastructure , Serine Endopeptidases/chemistry , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Virion/drug effects , Virion/pathogenicity , Virion/ultrastructure
6.
Virol J ; 18(1): 149, 2021 07 18.
Article in English | MEDLINE | ID: covidwho-1496197

ABSTRACT

BACKGROUND: The novel coronavirus SARS-CoV-2 is the etiological agent of COVID-19. This virus has become one of the most dangerous in recent times with a very high rate of transmission. At present, several publications show the typical crown-shape of the novel coronavirus grown in cell cultures. However, an integral ultramicroscopy study done directly from clinical specimens has not been published. METHODS: Nasopharyngeal swabs were collected from 12 Cuban individuals, six asymptomatic and RT-PCR negative (negative control) and six others from a COVID-19 symptomatic and RT-PCR positive for SARS CoV-2. Samples were treated with an aldehyde solution and processed by scanning electron microscopy (SEM), confocal microscopy (CM) and, atomic force microscopy. Improvement and segmentation of coronavirus images were performed by a novel mathematical image enhancement algorithm. RESULTS: The images of the negative control sample showed the characteristic healthy microvilli morphology at the apical region of the nasal epithelial cells. As expected, they do not display virus-like structures. The images of the positive sample showed characteristic coronavirus-like particles and evident destruction of microvilli. In some regions, virions budding through the cell membrane were observed. Microvilli destruction could explain the anosmia reported by some patients. Virus-particles emerging from the cell-surface with a variable size ranging from 80 to 400 nm were observed by SEM. Viral antigen was identified in the apical cells zone by CM. CONCLUSIONS: The integral microscopy study showed that SARS-CoV-2 has a similar image to SARS-CoV. The application of several high-resolution microscopy techniques to nasopharyngeal samples awaits future use.


Subject(s)
COVID-19/pathology , Nasopharynx/ultrastructure , SARS-CoV-2/ultrastructure , Antigens, Viral/metabolism , COVID-19/diagnosis , COVID-19/virology , Epithelial Cells/ultrastructure , Epithelial Cells/virology , Humans , Image Enhancement , Microscopy , Microvilli/ultrastructure , Nasal Mucosa/ultrastructure , Nasal Mucosa/virology , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Virion/ultrastructure
7.
Viruses ; 13(9)2021 09 13.
Article in English | MEDLINE | ID: covidwho-1411078

ABSTRACT

BACKGROUND: There is increasing evidence that identification of SARS-CoV-2 virions by transmission electron microscopy could be misleading due to the similar morphology of virions and ubiquitous cell structures. This study thus aimed to establish methods for indisputable proof of the presence of SARS-CoV-2 virions in the observed tissue. METHODS: We developed a variant of the correlative microscopy approach for SARS-CoV-2 protein identification using immunohistochemical labelling of SARS-CoV-2 proteins on light and electron microscopy levels. We also performed immunogold labelling of SARS-CoV-2 virions. RESULTS: Immunohistochemistry (IHC) of SARS-CoV-2 nucleocapsid proteins and subsequent correlative microscopy undoubtedly proved the presence of SARS-CoV-2 virions in the analysed human nasopharyngeal tissue. The presence of SARS-CoV-2 virions was also confirmed by immunogold labelling for the first time. CONCLUSIONS: Immunoelectron microscopy is the most reliable method for distinguishing intracellular viral particles from normal cell structures of similar morphology and size as virions. Furthermore, we developed a variant of correlative microscopy that allows pathologists to check the results of IHC performed first on routinely used paraffin-embedded samples, followed by semithin, and finally by ultrathin sections. Both methodological approaches indisputably proved the presence of SARS-CoV-2 virions in cells.


Subject(s)
COVID-19/virology , SARS-CoV-2/isolation & purification , Virion/isolation & purification , Coronavirus Nucleocapsid Proteins/analysis , Humans , Immunohistochemistry , Microscopy, Immunoelectron , Nasopharynx/virology , Phosphoproteins/analysis , SARS-CoV-2/ultrastructure , Virion/ultrastructure
8.
Int J Mol Sci ; 22(16)2021 Aug 23.
Article in English | MEDLINE | ID: covidwho-1367852

ABSTRACT

The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 virion, most of the reported pseudotype viruses consist of only the S protein. Here, we report that the presence of E and M increased the virion infectivity by promoting the S protein priming. The S, E, and M (SEM)-coated pseudovirion is spherical, containing crown-like spikes on the surface. Both S and SEM pseudoviruses packaged the same amounts of viral RNA, but the SEM virus bound more efficiently to cells stably expressing the viral receptor human angiotensin-converting enzyme II (hACE2) and became more infectious. Using this SEM pseudovirus, we examined the infectivity and antigenic properties of the natural SARS-CoV-2 variants. We showed that some variants have higher infectivity than the original virus and that some render the neutralizing plasma with lower potency. These studies thus revealed possible mechanisms of the dissemination advantage of these variants. Hence, the SEM pseudovirion provides a useful tool to evaluate the viral infectivity and capability of convalescent sera in neutralizing specific SARS-CoV-2 S dominant variants.


Subject(s)
Antibodies, Viral/metabolism , COVID-19/immunology , Coronavirus Envelope Proteins/metabolism , SARS-CoV-2/pathogenicity , Viral Matrix Proteins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/virology , Cell Line , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/immunology , Coronavirus Envelope Proteins/ultrastructure , Cricetinae , Humans , Microscopy, Electron, Transmission , Mutation , Neutralization Tests , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology , Viral Matrix Proteins/ultrastructure , Virion/genetics , Virion/immunology , Virion/metabolism , Virion/ultrastructure
9.
Opt Express ; 29(16): 25745-25761, 2021 Aug 02.
Article in English | MEDLINE | ID: covidwho-1363582

ABSTRACT

In spite of tremendous advancements in modern diagnostics, there is a dire need for reliable, label-free detection of highly contagious pathogens like viruses. In view of the limitations of existing diagnostic techniques, the present theoretical study proposes a novel scheme of detecting virus-like particles employing whispering gallery and quasi-whispering gallery resonant modes of a composite optical system. Whereas whispering gallery mode (WGM) resonators are conventionally realized using micro-disk, -ring, -toroid or spherical structures, the present study utilizes a rotationally symmetric array of silicon nanowires which offers higher sensitivity compared to the conventional WGM resonator while detecting virus-like particles. Notwithstanding the relatively low quality factor of the system, the underlying multiple-scattering mediated photon entrapment, coupled with peripheral total-internal reflection, results in high fidelity of the system against low signal-to-noise ratio. Finite difference time domain based numerical analysis has been performed to correlate resonant modes of the array with spatial location of the virus. The correlation has been subsequently utilized for statistical analysis of simulated test cases. Assuming detection to be limited by resolution of the measurement system, results of the analysis suggest that for only about 5% of the simulate test cases the resonant wavelength shift lies within the minimum detection range of 0.001-0.01 nm. For a single virus of 160 nm diameter, more than 8 nm shift of the resonant mode and nearly 100% change of quality factor are attained with the proposed nanowire array based photonic structure.


Subject(s)
Models, Theoretical , Nanowires , Optical Devices , Silicon , Virion/isolation & purification , Optics and Photonics/methods , Signal-To-Noise Ratio , Virion/ultrastructure
10.
Nature ; 588(7838): 498-502, 2020 12.
Article in English | MEDLINE | ID: covidwho-1343462

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions are surrounded by a lipid bilayer from which spike (S) protein trimers protrude1. Heavily glycosylated S trimers bind to the angiotensin-converting enzyme 2 receptor and mediate entry of virions into target cells2-6. S exhibits extensive conformational flexibility: it modulates exposure of its receptor-binding site and subsequently undergoes complete structural rearrangement to drive fusion of viral and cellular membranes2,7,8. The structures and conformations of soluble, overexpressed, purified S proteins have been studied in detail using cryo-electron microscopy2,7,9-12, but the structure and distribution of S on the virion surface remain unknown. Here we applied cryo-electron microscopy and tomography to image intact SARS-CoV-2 virions and determine the high-resolution structure, conformational flexibility and distribution of S trimers in situ on the virion surface. These results reveal the conformations of S on the virion, and provide a basis from which to understand interactions between S and neutralizing antibodies during infection or vaccination.


Subject(s)
Cryoelectron Microscopy , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/ultrastructure , Virion/chemistry , Virion/ultrastructure , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line, Tumor , Humans , Models, Molecular , Pliability , Protein Conformation , Protein Multimerization , SARS-CoV-2/chemistry , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/isolation & purification , Virion/isolation & purification , Virion/metabolism
11.
JAMA Ophthalmol ; 139(9): 1015-1021, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1330283

ABSTRACT

Importance: The presence of the SARS-CoV-2 virus in the retina of deceased patients with COVID-19 has been suggested through real-time reverse polymerase chain reaction and immunological methods to detect its main proteins. The eye has shown abnormalities associated with COVID-19 infection, and retinal changes were presumed to be associated with secondary microvascular and immunological changes. Objective: To demonstrate the presence of presumed SARS-CoV-2 viral particles and its relevant proteins in the eyes of patients with COVID-19. Design, Setting, and Participants: The retina from enucleated eyes of patients with confirmed COVID-19 infection were submitted to immunofluorescence and transmission electron microscopy processing at a hospital in São Paulo, Brazil, from June 23 to July 2, 2020. After obtaining written consent from the patients' families, enucleation was performed in patients deceased with confirmed SARS-CoV-2 infection. All patients were in the intensive care unit, received mechanical ventilation, and had severe pulmonary involvement by COVID-19. Main Outcomes and Measures: Presence of presumed SARS-CoV-2 viral particles by immunofluorescence and transmission electron microscopy processing. Results: Three patients who died of COVID-19 were analyzed. Two patients were men, and 1 was a woman. The age at death ranged from 69 to 78 years. Presumed S and N COVID-19 proteins were seen by immunofluorescence microscopy within endothelial cells close to the capillary flame and cells of the inner and the outer nuclear layers. At the perinuclear region of these cells, it was possible to observe by transmission electron microscopy double-membrane vacuoles that are consistent with the virus, presumably containing COVID-19 viral particles. Conclusions and Relevance: The present observations show presumed SARS-CoV-2 viral particles in various layers of the human retina, suggesting that they may be involved in some of the infection's ocular clinical manifestations.


Subject(s)
COVID-19/virology , Retina/virology , SARS-CoV-2/isolation & purification , Virion/isolation & purification , Aged , COVID-19/diagnosis , COVID-19/mortality , Female , Fluorescent Antibody Technique , Humans , Male , Microscopy, Electron, Transmission , Retina/ultrastructure , SARS-CoV-2/ultrastructure , Virion/ultrastructure
12.
Sci Rep ; 11(1): 11885, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1258601

ABSTRACT

SARS-CoV-2 is an enveloped virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. Here, single viruses were analyzed by atomic force microscopy (AFM) operating directly in a level 3 biosafety (BSL3) facility, which appeared as a fast and powerful method to assess at the nanoscale level and in 3D infectious virus morphology in its native conformation, or upon inactivation treatments. AFM imaging reveals structurally intact infectious and inactivated SARS-CoV-2 upon low concentration of formaldehyde treatment. This protocol combining AFM and plaque assays allows the preparation of intact inactivated SARS-CoV-2 particles for safe use of samples out of level 3 laboratory to accelerate researches against the COVID-19 pandemic. Overall, we illustrate how adapted BSL3-AFM is a remarkable toolbox for rapid and direct virus analysis based on nanoscale morphology.


Subject(s)
COVID-19/virology , Microscopy, Atomic Force , SARS-CoV-2/ultrastructure , Virion/ultrastructure , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2/physiology , Vero Cells , Virion/physiology , Virus Inactivation
13.
Neuroreport ; 32(9): 771-775, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1231060

ABSTRACT

Since coronavirus disease 2019 (COVID-19) swept all over the world, several studies have shown the susceptibility of a patient with cancer to COVID-19. In this case, the removed glioblastoma multiforme (GBM)-adjacent (GBM-A), GBM-peritumor and GBM-central (GBM-C) tissues from a convalescent patient of COVID-19, who also suffered from glioblastoma meanwhile, together with GBM-A and GBM tissues from a patient without COVID-19 history as negative controls, were used for RNA ISH, electron microscopy observing and immunohistochemical staining of ACE2 and the virus antigen (N protein). The results of RNA ISH, electron microscopy observing showed that SARS-CoV-2 directly infects some cells within human GBM tissues and SARS-CoV-2 in GBM-C tissue still exists even when it is cleared elsewhere. Immunohistochemical staining of ACE2 and N protein showed that the expressions of ACE2 are significantly higher in specimens, including GBM-C tissue from COVID-19 patient than other types of tissue. The unique phenomenon suggests that the surgical protection level should be upgraded even if the patient is in a convalescent period and the pharyngeal swab tests show negative results. Furthermore, more attention should be paid to confirm whether the shelter-like phenomenon happens in other malignancies due to the similar microenvironment and high expression of ACE2 in some malignancies.


Subject(s)
Brain Neoplasms/virology , COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Glioblastoma/virology , SARS-CoV-2/metabolism , Adult , Angiotensin-Converting Enzyme 2/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/surgery , Brain Neoplasms/ultrastructure , COVID-19/virology , COVID-19 Nucleic Acid Testing , Convalescence , Glioblastoma/metabolism , Glioblastoma/surgery , Glioblastoma/ultrastructure , Humans , In Situ Hybridization , Male , Microscopy, Electron, Transmission , Phosphoproteins/metabolism , RNA, Viral/metabolism , Receptors, Coronavirus/metabolism , SARS-CoV-2/ultrastructure , Virion/ultrastructure
14.
Cardiovasc Res ; 117(6): 1557-1566, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1127334

ABSTRACT

AIMS: Patients with severe respiratory syndrome caused by SARS-CoV-2 undergo cardiac complications due to hyper-inflammatory conditions. Although the presence of the virus has been detected in the myocardium of infected patients, and infection of induced pluripotent cell-derived cardiomyocytes has been demonstrated, the reported expression of Angiotensin-Converting Enzyme-2 (ACE2) in cardiac stromal cells suggests that SARS-CoV-2 may determine cardiac injury by sustaining productive infection and increasing inflammation. METHODS AND RESULTS: We analysed expression of ACE2 receptor in primary human cardiac stromal cells derived from cardiospheres, using proteomics and transcriptomics before exposing them to SARS-CoV-2 in vitro. Using conventional and high sensitivity PCR methods, we measured virus release in the cellular supernatants and monitored the intracellular viral bioprocessing. We performed high-resolution imaging to show the sites of intracellular viral production and demonstrated the presence of viral particles in the cells with electron microscopy. We finally used RT-qPCR assays to detect genes linked to innate immunity and fibrotic pathways coherently regulated in cells after exposure to the virus. CONCLUSIONS: Our findings indicate that cardiac stromal cells are susceptible to SARS-CoV-2 infection and produce variable viral yields depending on the extent of cellular ACE2 receptor expression. Interestingly, these cells also evolved towards hyper-inflammatory/pro-fibrotic phenotypes independently of ACE2 levels. Thus, SARS-CoV-2 infection of myocardial stromal cells could be involved in cardiac injury and explain the high number of complications observed in severe cases of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Heart Diseases/virology , Myocardium/enzymology , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Stromal Cells/virology , Virion/pathogenicity , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/complications , Chlorocebus aethiops , Female , Fibrosis , Heart Diseases/enzymology , Heart Diseases/pathology , Host-Pathogen Interactions , Humans , Inflammation Mediators/metabolism , Male , Middle Aged , Myocardium/ultrastructure , Phenotype , Receptors, Virus/genetics , SARS-CoV-2/ultrastructure , Spheroids, Cellular , Stromal Cells/enzymology , Stromal Cells/ultrastructure , Vero Cells , Virion/ultrastructure
15.
Sci Rep ; 11(1): 3515, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1078602

ABSTRACT

SARS-CoV-2 is the causative of the COVID-19 disease, which has spread pandemically around the globe within a few months. It is therefore necessary to collect fundamental information about the disease, its epidemiology and treatment, as well as about the virus itself. While the virus has been identified rapidly, detailed ultrastructural analysis of virus cell biology and architecture is still in its infancy. We therefore studied the virus morphology and morphometry of SARS-CoV-2 in comparison to SARS-CoV as it appears in Vero cell cultures by using conventional thin section electron microscopy and electron tomography. Both virus isolates, SARS-CoV Frankfurt 1 and SARS-CoV-2 Italy-INMI1, were virtually identical at the ultrastructural level and revealed a very similar particle size distribution with a median of about 100 nm without spikes. Maximal spike length of both viruses was 23 nm. The number of spikes per virus particle was about 30% higher in the SARS-CoV than in the SARS-CoV-2 isolate. This result complements a previous qualitative finding, which was related to a lower productivity of SARS-CoV-2 in cell culture in comparison to SARS-CoV.


Subject(s)
SARS-CoV-2/ultrastructure , Virion/ultrastructure , Animals , Chlorocebus aethiops , Electron Microscope Tomography , Plastics , RNA, Viral , Vero Cells , Virus Replication
16.
IEEE Trans Vis Comput Graph ; 27(2): 722-732, 2021 02.
Article in English | MEDLINE | ID: covidwho-1066570

ABSTRACT

We present a new technique for the rapid modeling and construction of scientifically accurate mesoscale biological models. The resulting 3D models are based on a few 2D microscopy scans and the latest knowledge available about the biological entity, represented as a set of geometric relationships. Our new visual-programming technique is based on statistical and rule-based modeling approaches that are rapid to author, fast to construct, and easy to revise. From a few 2D microscopy scans, we determine the statistical properties of various structural aspects, such as the outer membrane shape, the spatial properties, and the distribution characteristics of the macromolecular elements on the membrane. This information is utilized in the construction of the 3D model. Once all the imaging evidence is incorporated into the model, additional information can be incorporated by interactively defining the rules that spatially characterize the rest of the biological entity, such as mutual interactions among macromolecules, and their distances and orientations relative to other structures. These rules are defined through an intuitive 3D interactive visualization as a visual-programming feedback loop. We demonstrate the applicability of our approach on a use case of the modeling procedure of the SARS-CoV-2 virion ultrastructure. This atomistic model, which we present here, can steer biological research to new promising directions in our efforts to fight the spread of the virus.


Subject(s)
COVID-19/virology , Models, Molecular , Models, Statistical , SARS-CoV-2 , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/ultrastructure , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Virion/chemistry , Virion/ultrastructure
17.
Nano Lett ; 21(6): 2675-2680, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1039625

ABSTRACT

SARS-CoV-2, the virus responsible for the current COVID-19 pandemic, displays a corona-shaped layer of spikes which play a fundamental role in the infection process. Recent structural data suggest that the spikes possess orientational freedom and the ribonucleoproteins segregate into basketlike structures. How these structural features regulate the dynamic and mechanical behavior of the native virion are yet unknown. By imaging and mechanically manipulating individual, native SARS-CoV-2 virions with atomic force microscopy, here, we show that their surface displays a dynamic brush owing to the flexibility and rapid motion of the spikes. The virions are highly compliant and able to recover from drastic mechanical perturbations. Their global structure is remarkably temperature resistant, but the virion surface becomes progressively denuded of spikes upon thermal exposure. The dynamics and the mechanics of SARS-CoV-2 are likely to affect its stability and interactions.


Subject(s)
COVID-19/virology , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/physiology , Virion/chemistry , Virion/physiology , Biomechanical Phenomena , Hot Temperature , Humans , Microscopy, Atomic Force , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology , Pandemics , Protein Conformation , Protein Stability , SARS-CoV-2/ultrastructure , Single Molecule Imaging , Spike Glycoprotein, Coronavirus/ultrastructure , Thermodynamics , Virion/ultrastructure
18.
J Biol Chem ; 296: 100103, 2021.
Article in English | MEDLINE | ID: covidwho-936211

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first discovered in December 2019 in Wuhan, China, and expeditiously spread across the globe causing a global pandemic. Research on SARS-CoV-2, as well as the closely related SARS-CoV-1 and MERS coronaviruses, is restricted to BSL-3 facilities. Such BSL-3 classification makes SARS-CoV-2 research inaccessible to the majority of functioning research laboratories in the United States; this becomes problematic when the collective scientific effort needs to be focused on such in the face of a pandemic. However, a minimal system capable of recapitulating different steps of the viral life cycle without using the virus' genetic material could increase accessibility. In this work, we assessed the four structural proteins from SARS-CoV-2 for their ability to form virus-like particles (VLPs) from human cells to form a competent system for BSL-2 studies of SARS-CoV-2. Herein, we provide methods and resources of producing, purifying, fluorescently and APEX2-labeling of SARS-CoV-2 VLPs for the evaluation of mechanisms of viral budding and entry as well as assessment of drug inhibitors under BSL-2 conditions. These systems should be useful to those looking to circumvent BSL-3 work with SARS-CoV-2 yet study the mechanisms by which SARS-CoV-2 enters and exits human cells.


Subject(s)
Coronavirus Envelope Proteins/genetics , Nucleocapsid Proteins/genetics , SARS-CoV-2/growth & development , Spike Glycoprotein, Coronavirus/genetics , Viral Matrix Proteins/genetics , Virion/growth & development , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Containment of Biohazards/classification , Coronavirus Envelope Proteins/metabolism , Gene Expression , Genes, Reporter , Government Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Electron , Nucleocapsid Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/metabolism , Viral Matrix Proteins/metabolism , Virion/genetics , Virion/metabolism , Virion/ultrastructure , Virus Assembly/physiology , Virus Internalization , Virus Release/physiology
19.
BMC Pulm Med ; 20(1): 301, 2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-925848

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly reached pandemic proportions. Given that the main target of SARS-CoV-2 are lungs leading to severe pneumonia with hyperactivation of the inflammatory cascade, we conducted a prospective study to assess alveolar inflammatory status in patients with moderate to severe COVID-19. METHODS: Diagnostic bronchoalveolar lavage (BAL) was performed in 33 adult patients with SARS-CoV-2 infection by real-time PCR on nasopharyngeal swab admitted to the Intensive care unit (ICU) (n = 28) and to the Intermediate Medicine Ward (IMW) (n = 5). We analyze the differential cell count, ultrastructure of cells and Interleukin (IL)6, 8 and 10 levels. RESULTS: ICU patients showed a marked increase in neutrophils (1.24 × 105 ml- 1, 0.85-2.07), lower lymphocyte (0.97 × 105 ml- 1, 0.024-0.34) and macrophages fractions (0.43 × 105 ml- 1, 0.34-1.62) compared to IMW patients (0.095 × 105 ml- 1, 0.05-0.73; 0.47 × 105 ml- 1, 0.28-1.01 and 2.14 × 105 ml- 1, 1.17-3.01, respectively) (p < 0.01). Study of ICU patients BAL by electron transmission microscopy showed viral particles inside mononuclear cells confirmed by immunostaining with anti-viral capsid and spike antibodies. IL6 and IL8 were significantly higher in ICU patients than in IMW (IL6 p < 0.01, IL8 p < 0.0001), and also in patients who did not survive (IL6 p < 0.05, IL8 p = 0.05 vs. survivors). IL10 did not show a significant variation between groups. Dividing patients by treatment received, lower BAL concentrations of IL6 were found in patients treated with steroids as compared to those treated with tocilizumab (p < 0.1) or antivirals (p < 0.05). CONCLUSIONS: Alveolitis, associated with COVID-19, is mainly sustained by innate effectors which showed features of extensive activation. The burden of pro-inflammatory cytokines IL6 and IL8 in the broncho-alveolar environment is associated with clinical outcome.


Subject(s)
Bronchoalveolar Lavage Fluid/immunology , Coronavirus Infections/immunology , Inflammation/immunology , Interleukin-6/immunology , Interleukin-8/immunology , Leukocytes/immunology , Lung/immunology , Macrophages, Alveolar/immunology , Pneumonia, Viral/immunology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Aged , Alanine/analogs & derivatives , Alanine/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/therapy , Drug Combinations , Female , Humans , Hydroxychloroquine/therapeutic use , Intensive Care Units , Interleukin-10/immunology , Italy , Leukocytes, Mononuclear/virology , Lopinavir/therapeutic use , Lung/cytology , Lung/virology , Lymphocytes/immunology , Male , Microscopy, Electron, Transmission , Middle Aged , Neutrophils/immunology , Pandemics , Pneumonia, Viral/therapy , Prognosis , Prospective Studies , Respiration, Artificial/methods , Ritonavir/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Survival Rate , Virion/metabolism , Virion/ultrastructure , COVID-19 Drug Treatment
20.
Cell Host Microbe ; 28(6): 880-891.e8, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-921850

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) mediates viral entry into cells and is critical for vaccine development against coronavirus disease 2019 (COVID-19). Structural studies have revealed distinct conformations of S, but real-time information that connects these structures is lacking. Here we apply single-molecule fluorescence (Förster) resonance energy transfer (smFRET) imaging to observe conformational dynamics of S on virus particles. Virus-associated S dynamically samples at least four distinct conformational states. In response to human receptor angiotensin-converting enzyme 2 (hACE2), S opens sequentially into the hACE2-bound S conformation through at least one on-path intermediate. Conformational preferences observed upon exposure to convalescent plasma or antibodies suggest mechanisms of neutralization involving either competition with hACE2 for binding to the receptor-binding domain (RBD) or allosteric interference with conformational changes required for entry. Our findings inform on mechanisms of S recognition and conformations for immunogen design.


Subject(s)
COVID-19/genetics , Protein Conformation , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/ultrastructure , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Epitopes/immunology , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/ultrastructure , Protein Binding/immunology , Receptors, Virus/genetics , Receptors, Virus/immunology , Receptors, Virus/ultrastructure , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Virion/genetics , Virion/ultrastructure , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL